Face Aging using CycleGANs
map age progression in faces from the UTKFace dataset using CycleGANs.
In this post we will train a GAN model to map Age progression in faces- i.e generate an aged photo of a person given a photo at younger age (and also the reverse). We will use CycleGANs for this.
CycleGANs were introduced in this paper titled Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks where the authors presented an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples.
For the images of faces with various ages we will be using the UTKFace dataset which has a cropped image set of only faces marked with age , gender , race , etc.
We will be using following two good references that use CycleGAN in order to build and train our models
import numpy as np
import keras
import tensorflow as tf
from keras.layers import Input,Conv2D,MaxPooling2D,Flatten,Activation,BatchNormalization,K,UpSampling2D
from keras.layers import Dropout,GlobalAveragePooling2D,LeakyReLU,Dense,Reshape, concatenate,Conv2DTranspose
from keras.models import Model,load_model
import matplotlib.pyplot as plt
#import keras.backend as K
import os
import time
from datetime import datetime
from keras.applications import InceptionResNetV2
from keras.callbacks import TensorBoard
from keras.optimizers import Adam
from keras.utils import to_categorical
from keras_preprocessing import image
from numpy import asarray
from numpy import vstack
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from numpy import savez_compressed
import pandas as pd
import os
from matplotlib import pyplot
from numpy import load
from random import random
from numpy import load
from numpy import zeros
from numpy import ones
from numpy import asarray
from numpy.random import randint
from keras.optimizers import Adam
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# Create a session with the above options specified.
keras.backend.tensorflow_backend.set_session(tf.Session(config=config))
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
!ls -al '/content/drive/My Drive/FaceGAN/'
!tar zxf '/content/drive/My Drive/FaceGAN/UTKFace.tar.gz' UTKFace
Parse the data
The labels of each face image is embedded in the file name, formated like [age][gender][race]_[date&time].jpg
[age] is an integer from 0 to 116, indicating the age
[gender] is either 0 (male) or 1 (female)
[race] is an integer from 0 to 4, denoting White, Black, Asian, Indian, and Others (like Hispanic, Latino, Middle Eastern).
[date&time] is in the format of yyyymmddHHMMSSFFF, showing the date and time an image was collected to UTKFace
data=[]
for filename in os.listdir('./UTKFace'):
parts=filename.split('_')
#print(parts[3])
item={}
item['image']=filename
item['age']=parts[0]
item['gender']=parts[1]
item['race']=parts[2]
if (len(parts)==4):
item['date_time']=parts[3]
data.append(item)
utk_data=pd.DataFrame(data)
utk_data.describe()
utk_data.info()
utk_data.head()
del utk_data['date_time']
def age_cat_fn(age):
age=int(age)
if (0<age<18):
return 0
elif(18<=age<=25):
return 1
elif (25<age<=39):
return 2
elif (39< age <=49):
return 3
elif (49 < age <=60):
return 4
elif age>60:
return 5
utk_data['age_cat']=utk_data.age.map(age_cat_fn)
utk_data.to_csv('utk_data.csv',sep=',')
!cp 'utk_data.csv' '/content/drive/My Drive/EIP3/session7'
utk_data.head()
data_A=utk_data[utk_data.age_cat==1]
data_B=utk_data[utk_data.age_cat==4]
print(data_A['age_cat'].count())
print(data_B['age_cat'].count())
image_dir='./UTKFace/'
image_paths_A = data_A['image'].tolist()
image_paths_B = data_B['image'].tolist()
#print(image_paths[:10])
images_A=None
images_B=None
#store 2000 images for A
for i, image_path in enumerate(image_paths_A):
if (i<2000):
if (i%1000==0):
print("processing set A image num "+str(i))
try:
# Load image
loaded_image = image.load_img(image_dir+image_path, target_size=(128,128,3))
# Convert PIL image to numpy ndarray
loaded_image = image.img_to_array(loaded_image)
# Add another dimension (Add batch dimension)
loaded_image = np.expand_dims(loaded_image, axis=0)
# Concatenate all images into one tensor
if images_A is None:
images_A = loaded_image
else:
images_A = np.concatenate([images_A, loaded_image], axis=0)
except Exception as e:
print("Error:", i, e)
#store 2000 images for B
for i, image_path in enumerate(image_paths_B):
if (i<2000):
if (i%999==0):
print("processing set B image num "+str(i))
try:
# Load image
loaded_image = image.load_img(image_dir+image_path, target_size=(128,128,3))
# Convert PIL image to numpy ndarray
loaded_image = image.img_to_array(loaded_image)
# Add another dimension (Add batch dimension)
loaded_image = np.expand_dims(loaded_image, axis=0)
# Concatenate all images into one tensor
if images_B is None:
images_B = loaded_image
else:
images_B = np.concatenate([images_B, loaded_image], axis=0)
except Exception as e:
print("Error:", i, e)
print('images_A :')
print(images_A.shape)
print('images_B :')
print(images_B.shape)
filename = '/content/drive/My Drive/EIP3/session7/utkface_128.npz'
savez_compressed(filename, images_A, images_B)
print('Saved dataset: ', filename)
from numpy import load
from matplotlib import pyplot
# load the dataset
data = load('/content/drive/My Drive/EIP3/session7/utkface_128.npz')
dataA, dataB = data['arr_0'], data['arr_1']
print('Loaded: ', dataA.shape, dataB.shape)
# plot source images
n_samples = 3
for i in range(n_samples):
pyplot.subplot(2, n_samples, 1 + i)
pyplot.axis('off')
pyplot.imshow(dataA[i].astype('uint8'))
# plot target image
for i in range(n_samples):
pyplot.subplot(2, n_samples, 1 + n_samples + i)
pyplot.axis('off')
pyplot.imshow(dataB[i].astype('uint8'))
pyplot.show()
!pip install git+https://www.github.com/keras-team/keras-contrib.git
from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization
from keras.initializers import RandomNormal
def conv2d(input_, output_dim, ks=4, s=2, stddev=0.02, padding='SAME',name='c2d'):
return Conv2D(output_dim,kernel_size=ks,strides=s,padding=padding,kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),name=name)(input_)
def lrelu(input_,name='lr'):
return LeakyReLU(alpha=0.2,name=name)(input_)
def iNorm(input_,name='iNorm'):
return InstanceNormalization(axis=-1,name=name)(input_)
def build_discriminator(image_shape):
# weight initialization
#init = RandomNormal(stddev=0.02)
# source image input
in_image = Input(shape=image_shape)
#C1
d1 = lrelu(conv2d(in_image,64,4,name='d_c1'),'lr1' )
# C2
d2 = lrelu(iNorm(conv2d(d1,128,4,name='d_c2'),'iN2'),'lr2')
# C3
d3 = lrelu(iNorm(conv2d(d1,256,4,name='d_c3'),'iN3'),'lr3')
# C4
d4 = lrelu(iNorm(conv2d(d3,512,4,name='d_c4'),'iN4'),'lr4')
'''
# second last output layer
d = conv2d(in_image,128,3,1)
d = iNorm(d)
d = lrelu(d)
'''
# output
d5 = conv2d(d4,1,4,1,name='d_c5') #Conv2D(1, 4,1, padding='same', kernel_initializer=init)(d)
# define model
model = Model(in_image, d5)
# compile model
model.compile(loss='mse', optimizer=Adam(lr=0.0002, beta_1=0.5), loss_weights=[0.5])
return model
disc=build_discriminator(dataB[0].shape)
disc.summary()
def padd3(input_):
import tensorflow as tf
return tf.pad(input_, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
def padd1(input_):
import tensorflow as tf
return tf.pad(input_, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
from keras.layers import Add,Lambda
def res_block(input_,nf=64,ks=3,s=1,name='res_blk'):
p=int((ks-1)/2)
y=Lambda(padd1)(input_) #(tf.pad(input_,[[0,0],[p,p],[p,p],[0,0]],'REFLECT'))
y=iNorm(conv2d(y,nf,ks,s,padding='VALID',name=name+'_c1'),name=name+'_iN1')
y=Lambda(padd1)(y) #(tf.pad(tf.nn.relu(y),[[0,0],[p,p],[p,p],[0,0]],'REFLECT'))
y=iNorm(conv2d(y,nf,ks,s,padding='VALID',name=name+'_c2'),name=name+'_iN2')
y1=keras.layers.Add()([y,input_])
return y1
def deconv2d(input_, output_dim, ks=4, s=2, stddev=0.02, padding='SAME',name='dc2d'):
#Conv2DTranspose(64, (3,3), strides=(2,2), padding='same', kernel_initializer=init)(g)
dcv=Conv2DTranspose(output_dim,(ks,ks),strides=(s,s),padding=padding,kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),name=name)(input_)
return dcv
from keras.layers import Lambda,Conv2DTranspose
def build_generator(image_shape):
nf=64 # num filters for first layer
input_=Input(shape=(128,128,3))
c0 = Lambda(padd3)(input_)
c1 = Activation('relu')(iNorm(conv2d(c0, nf, 7, 1, padding='VALID', name='g_e1_c'), 'g_e1_bn'))
c2 = Activation('relu')(iNorm(conv2d(c1, nf*2, 3, 2, name='g_e2_c'), 'g_e2_bn'))
c3 = Activation('relu')(iNorm(conv2d(c2, nf*4 , 3, 2, name='g_e3_c'), 'g_e3_bn'))
r1 = res_block(c3, nf*4, name='g_r1')
r2 = res_block(r1, nf*4, name='g_r2')
r3 = res_block(r2, nf*4, name='g_r3')
r4 = res_block(r3, nf*4, name='g_r4')
r5 = res_block(r4, nf*4, name='g_r5')
r6 = res_block(r5, nf*4, name='g_r6')
r7 = res_block(r6, nf*4, name='g_r7')
r8 = res_block(r7, nf*4, name='g_r8')
r9 = res_block(r8, nf*4, name='g_r9')
d1=Conv2DTranspose(nf*2, (3,3), strides=(2,2), padding='same', kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),name='g_d1_dc')(r9)
d1=Activation('relu')(iNorm(d1,name='g_d1_bn'))
d2=Conv2DTranspose(nf, (3,3), strides=(2,2), padding='same', kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),name='g_d2_dc')(d1)
d2=Activation('relu')(iNorm(d2,name='g_d2_bn'))
d2 = Lambda(padd3)(d2)#(tf.pad(d2, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT"))
d3=conv2d(d2, 3 , 7, 1, padding='VALID', name='g_pred_c')
pred=Activation('tanh')(d3)
model=Model(input_,pred)
return model
gen=build_generator(dataA[0].shape)
gen.summary()
def build_composite_model(g_model_1, d_model, g_model_2, image_shape):
# ensure the model we're updating is trainable
g_model_1.trainable = True
# mark discriminator as not trainable
d_model.trainable = False
# mark other generator model as not trainable
g_model_2.trainable = False
# discriminator element
input_gen = Input(shape=image_shape)
gen1_out = g_model_1(input_gen)
output_d = d_model(gen1_out)
# identity element
input_id = Input(shape=image_shape)
output_id = g_model_1(input_id)
# forward cycle
output_f = g_model_2(gen1_out)
# backward cycle
gen2_out = g_model_2(input_id)
output_b = g_model_1(gen2_out)
# define model graph
model = Model([input_gen, input_id], [output_d, output_id, output_f, output_b])
# define optimization algorithm configuration
opt = Adam(lr=0.0002, beta_1=0.5)
# compile model with weighting of least squares loss and L1 loss
model.compile(loss=['mse', 'mae', 'mae', 'mae'], loss_weights=[1, 5, 10, 10], optimizer=opt)
return model
def get_subsample(dataset):
t1=np.random.randint(900)
t2=np.random.randint(1200,2000)
t3=np.random.randint(2500,2800)
return np.vstack((dataset[0][t1:t1+300],dataset[0][t2:t2+400],dataset[0][t3:t3+300])),np.vstack((dataset[1][t1:t1+300], dataset[1][t2:t2+400],dataset[1][t3:t3+300]))
def get_subsample2(dataset):
t0=np.random.randint(250)
t1=np.random.randint(300)
t2=np.random.randint(1200,2000)
t3=np.random.randint(2500,2800)
return np.vstack((dataset[0][t1:t1+800],dataset[0][t2:t2+200])),np.vstack((dataset[1][t1:t1+100], dataset[2][t0:t0+900]))
def load_real_samples2(filename):
data = load(filename)
X1,X2,X3 = data['arr_0'],data['arr_1'],data['arr_2']
X1= (X1-127.5)/127.5
X2 = (X2-127.5)/127.5
X3 = (X3-127.5)/127.5
return X1,X2,X3
def load_real_samples(filename):
# load the dataset
data = load(filename)
# unpack arrays
X1, X2 = data['arr_0'], data['arr_1']
# scale from [0,255] to [-1,1]
X1 = (X1 - 127.5) / 127.5
X2 = (X2 - 127.5) / 127.5
return [X1, X2]
# select a batch of random samples, returns images and target
def generate_real_samples(dataset, n_samples, patch_shape):
# choose random instances
ix = randint(0, dataset.shape[0], n_samples)
# retrieve selected images
X = dataset[ix]
# generate 'real' class labels (1)
y = ones((n_samples, patch_shape, patch_shape, 1))
return X, y
# generate a batch of images, returns images and targets
def generate_fake_samples(g_model, dataset, patch_shape):
# generate fake instance
X = g_model.predict(dataset)
# create 'fake' class labels (0)
y = zeros((len(X), patch_shape, patch_shape, 1))
return X, y
# save the generator models to file
def save_models(step, g_model_AtoB, g_model_BtoA):
# save the first generator model
filename1 = '/content/drive/My Drive/EIP3/session7/g_model_AtoB_%06d.h5' % (step+1)
g_model_AtoB.save(filename1)
# save the second generator model
filename2 = '/content/drive/My Drive/EIP3/session7/g_model_BtoA_%06d.h5' % (step+1)
g_model_BtoA.save(filename2)
print('>Saved: %s and %s' % (filename1, filename2))
# save the generator models to file
def save_models2(step, g_model_AtoB, g_model_BtoA,d_model_A,d_model_B):
# save the first generator model
filename1 = '/content/drive/My Drive/EIP3/session7/g_model_AtoB_%06d.h5' % (step+1)
g_model_AtoB.save(filename1)
# save the second generator model
filename2 = '/content/drive/My Drive/EIP3/session7/g_model_BtoA_%06d.h5' % (step+1)
g_model_BtoA.save(filename2)
# save the first discriminator model A
filename3 = '/content/drive/My Drive/EIP3/session7/d_model_A_%06d.h5' % (step+1)
d_model_A.save(filename3)
# save the first discriminator model B
filename4 = '/content/drive/My Drive/EIP3/session7/d_model_B_%06d.h5' % (step+1)
d_model_B.save(filename4)
print('>Saved: %s , %s , %s and %s' % (filename1, filename2,filename3,filename4))
def summarize_performance(step, g_model, trainX, name, n_samples=5):
pyplot.figure(
figsize=(15, 8),
dpi=120)
# select a sample of input images
X_in, _ = generate_real_samples(trainX, n_samples, 0)
# generate translated images
X_out, _ = generate_fake_samples(g_model, X_in, 0)
# scale all pixels from [-1,1] to [0,1]
X_in = (X_in + 1) / 2.0
X_out = (X_out + 1) / 2.0
# plot real images
for i in range(n_samples):
pyplot.subplot(2, n_samples, 1 + i)
pyplot.axis('off')
pyplot.imshow(X_in[i])
# plot translated image
for i in range(n_samples):
pyplot.subplot(2, n_samples, 1 + n_samples + i)
pyplot.axis('off')
pyplot.imshow(X_out[i])
# save plot to file
filename1 = '/content/drive/My Drive/EIP3/session7/%s_generated_plot_%06d.png' % (name, (step+1))
pyplot.savefig(filename1)
pyplot.close()
def update_image_pool(pool, images, max_size=50):
selected = list()
for image in images:
if len(pool) < max_size:
# stock the pool
pool.append(image)
selected.append(image)
elif random() < 0.5:
# use image, but don't add it to the pool
selected.append(image)
else:
# replace an existing image and use replaced image
ix = randint(0, len(pool))
selected.append(pool[ix])
pool[ix] = image
return asarray(selected)
def train(d_model_A, d_model_B, g_model_AtoB, g_model_BtoA, c_model_AtoB, c_model_BtoA, dataset,batch_size,n_epochs):
# define properties of the training run
n_epochs, n_batch, = n_epochs, batch_size
# determine the output square shape of the discriminator
n_patch = d_model_A.output_shape[1]
# unpack dataset
trainA, trainB = get_subsample(dataset)
# prepare image pool for fakes
poolA, poolB = list(), list()
# calculate the number of batches per training epoch
bat_per_epo = int(len(trainA) / n_batch)
# calculate the number of training iterations
n_steps = bat_per_epo * n_epochs
# manually enumerate epochs
for i in range(n_steps):
# select a batch of real samples
X_realA, y_realA = generate_real_samples(trainA, n_batch, n_patch)
X_realB, y_realB = generate_real_samples(trainB, n_batch, n_patch)
# generate a batch of fake samples
X_fakeA, y_fakeA = generate_fake_samples(g_model_BtoA, X_realB, n_patch)
X_fakeB, y_fakeB = generate_fake_samples(g_model_AtoB, X_realA, n_patch)
# update fakes from pool
X_fakeA = update_image_pool(poolA, X_fakeA)
X_fakeB = update_image_pool(poolB, X_fakeB)
# update generator B->A via adversarial and cycle loss
g_loss2, _, _, _, _ = c_model_BtoA.train_on_batch([X_realB, X_realA], [y_realA, X_realA, X_realB, X_realA])
# update discriminator for A -> [real/fake]
dA_loss1 = d_model_A.train_on_batch(X_realA, y_realA)
dA_loss2 = d_model_A.train_on_batch(X_fakeA, y_fakeA)
# update generator A->B via adversarial and cycle loss
g_loss1, _, _, _, _ = c_model_AtoB.train_on_batch([X_realA, X_realB], [y_realB, X_realB, X_realA, X_realB])
# update discriminator for B -> [real/fake]
dB_loss1 = d_model_B.train_on_batch(X_realB, y_realB)
dB_loss2 = d_model_B.train_on_batch(X_fakeB, y_fakeB)
# summarize performance
print('>%d, dA[%.3f,%.3f] dB[%.3f,%.3f] g[%.3f,%.3f]' % (i+1, dA_loss1,dA_loss2, dB_loss1,dB_loss2, g_loss1,g_loss2))
# evaluate the model performance every so often
if (i+1) % (bat_per_epo * 1) == 0:
# plot A->B translation
summarize_performance(i, g_model_AtoB, trainA, 'AtoB')
# plot B->A translation
summarize_performance(i, g_model_BtoA, trainB, 'BtoA')
if (i+1) % (bat_per_epo * 5) == 0:
# save the models
save_models2(i, g_model_AtoB, g_model_BtoA,d_model_A,d_model_B)
from random import random
from numpy import load
from numpy import zeros
from numpy import ones
from numpy import asarray
from numpy.random import randint
from keras.optimizers import Adam
# load image data
dataset = load_real_samples('/content/drive/My Drive/EIP3/session7/utkface_128.npz')
print('Loaded', dataset[0].shape, dataset[1].shape)
# define input shape based on the loaded dataset
image_shape = dataset[0].shape[1:]
# generator: A -> B
g_model_AtoB = build_generator(image_shape)
# generator: B -> A
g_model_BtoA = build_generator(image_shape)
# discriminator: A -> [real/fake]
d_model_A = build_discriminator(image_shape)
# discriminator: B -> [real/fake]
d_model_B = build_discriminator(image_shape)
# composite: A -> B -> [real/fake, A]
c_model_AtoB = build_composite_model(g_model_AtoB, d_model_B, g_model_BtoA, image_shape)
# composite: B -> A -> [real/fake, B]
c_model_BtoA = build_composite_model(g_model_BtoA, d_model_A, g_model_AtoB, image_shape)
# train models
train(d_model_A, d_model_B, g_model_AtoB, g_model_BtoA, c_model_AtoB, c_model_BtoA, dataset,batch_size=2,n_epochs=10)
# load image data
dataset = load_real_samples('/content/drive/My Drive/EIP3/session7/utkface_128.npz')
print('Loaded', dataset[0].shape, dataset[1].shape)
# define input shape based on the loaded dataset
image_shape = dataset[0].shape[1:]
#load the previously trained model
cust = {'InstanceNormalization': InstanceNormalization, 'tf': tf}
# generator: A -> B
g_model_AtoB = load_model('/content/drive/My Drive/EIP3/session7/g_model_AtoB_005625.h5', cust)
# generator: B -> A
g_model_BtoA = load_model('/content/drive/My Drive/EIP3/session7/g_model_BtoA_005625.h5', cust)
# discriminator: A -> [real/fake]
d_model_A = build_discriminator(image_shape)
# discriminator: B -> [real/fake]
d_model_B = build_discriminator(image_shape)
# composite: A -> B -> [real/fake, A]
c_model_AtoB = build_composite_model(g_model_AtoB, d_model_B, g_model_BtoA, image_shape)
# composite: B -> A -> [real/fake, B]
c_model_BtoA = build_composite_model(g_model_BtoA, d_model_A, g_model_AtoB, image_shape)
dataset = load_real_samples2('/content/drive/My Drive/EIP3/session7/utkface_128_2.npz')
def show_results( g_model, trainX, n_samples=5,title='A to B'):
pyplot.figure(
figsize=(12, 6),
dpi=120)
# select a sample of input images
X_in, _ = generate_real_samples(trainX, n_samples, 0)
# generate translated images
X_out, _ = generate_fake_samples(g_model, X_in, 0)
# scale all pixels from [-1,1] to [0,1]
X_in = (X_in + 1) / 2.0
X_out = (X_out + 1) / 2.0
# plot real images
#pyplot.title(title)
for i in range(n_samples):
pyplot.subplot(2, n_samples, 1 + i)
pyplot.axis('off')
pyplot.imshow(X_in[i])
pyplot.show()
print(" ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ "+title+" ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓")
# plot translated image
pyplot.figure(
figsize=(12, 6),
dpi=120)
for i in range(n_samples):
pyplot.subplot(2, n_samples, 1 + n_samples + i)
pyplot.axis('off')
pyplot.imshow(X_out[i])
pyplot.show()